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Speaker Compensation

~

The performance of current automatic speech recognition (ASR)
algorithms degrades significantly in the presence of inter- speaker

differences.

Speaker compensation attempts to acount for or eliminate these

differences and thereby improve ASR performance.

Speaker normalization transforms the original cepstral features to

match the speaker-independent model:

X; = T(x;) (normalization)

Speaker adaptation transforms the original cepstral means to

match the features of a given speaker:
Ly = Ay, + bS) (adaptation)
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\ The All-Pass Transform /

e The all-pass transform (APT) is a linear transformation of
cepstral coefficients specified by very few free parameters
(e.g., one or nine).

e In normalization, the APT warps the frequency axis
associated with the short-time Fourier transform of a
segment of speech (ICSLP ’98).

e In adaptation, the APT transforms the cepstral means of an
HMM (ICASSP ’99).

e APT adaptation can be efficiently incorporated into HMM
parameter estimation to achieve matched conditions on
training and test (EuroSpeech '99).
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\ APT Spectral Transformation /

e QOriginal (thin line) and transformed (thick line) short-term

spectra regenerated from cepstra 0-14.
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e Note that the higher formants are shifted down, while the
lowest formant is shifted up. &
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\ The Sine-Log All-Pass Transform /
e Define the Sine-Log All-Pass Transform (SLAPT) as

Q(z) =z exp F(z)
where

M
F(z) = > o4 Fm(2) for oq,..., 000 € R,
m=1

Fn(z) = j1Tsin A% _omwv

e The SLAPT shares all characteristics of RAPT, save for its
rational form.

e The SLAPT, however, is more amenable for computation
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\ SLAPT Characteristics /
e Upon applying

sinz = — Am\.N - mi.mv
it follows
Fe(z) = & ANw - NLAV

which is a better form for computation.

e Parameterizing the unit circle as z = e/® provides

K
Q(e/®) =expj|w+ 1 > o sinwk
k=1
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SAT Schematic
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Multiple/Optimal Regression Classes

e In speaker adaptation, the Gaussian components of an HMM
are often partitioned into mutually-exclusive sets or
regression classes.

e An unique speaker-dependent transformation is then
estimated for each regression class.

e In earlier work, the regression classes were typically
obtained with binary divisive clustering or based on
phonetic similarity.
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Homewood Incremental Training (HIT)
HMM training techniques (submitted, ICASSP ’00).

mixture model.

computationally efficient manner.
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The unique characteristics of the APT mandate the use of special

1. Incrementally add speaker-dependent modeling detail to single

2. Detail may be added by increasing the number of regression
classes, or by the number of parameters per transform, or both.

4. Modeling detail is transferred to multiple-mixture model in a

~

3. We have developed useful heuristics for regression class splitting.
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The Mississippi State Training Set

e Speech recognizer was trained on a subset of Switchboard

Corpus training set, dubbed MsTrain

- Approximately 800 conversations total;

— Approximately 50 hours of speech;

- Approximately 400 speakers of each gender.

e MsTrain set used in estimating a “plain vanilla”
speaker-independent model:
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Speaker Normalization Results

e APT parameters were estimated with a simple GMM.

Feature Full-Matrix MLLR
Normalization || No Yes
None 40.6 36.3
RAPT-1 38.8 34.8
RAPT-5 39.4 35.0
SLAPT-1 38.8 34.7
SLAPT-5 39.6 35.3

matched.

e In all experiments, training and test conditions were
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e Feature normalization was tested in combination with MLLR.
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APT Rapid Adaptation Results

e Sparsity of parameters in APT make it ideal for use with
limited enrollment data.

e Unsupervised parameter estimation was performed using
various amounts of enrollment data.

Enrollment Set RAPT-1 RAPT-9 SLAPT-1 SLAPT-9 Full-Matrix MLLR
Baseline 41.5
2.5 min. 38.5 37.3 38.4 37.4 37.1
60 sec. 38.3 37.4 38.2 37.5 37.5
30 sec. 38.5 37.6 38.3 37.7 37.9
10 sec. 38.7 37.8 38.6 38.0 40.1
5 sec. 38.8 37.9 38.6 38.2 45.5

o All cases used a single, global transform.
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APT Adaptation Results

e The results of several speech recognition experiments using

unsupervised APT adaptation are tabulated below.

No. Regression Classes

% Word Error Rate

RAPT-1 RAPT-9

Baseline
1
2
4
8
16
24

40.6

38.2 37.3
37.0
36.3
36.1
36.1
35.6

e The use of more regression classes and more parameters per

transform results in ever increasing WER reductions.

e The best WER reduction is 5.0% absolute.
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MLLR Results

e Increasing the number of regression classes under MLLR
yields no additional improvement.

No. RegClasses || % Word Error Rate
Baseline 40.6
1 36.9
2 36.3
4 37.3

e The best WER reduction with MLLR is 4.3%, significantly less
than that obtained with APT-based adaptation.
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Conclusions

An APT-based speaker adaptation system yields an 5.0%
reduction in WER on a large vocabulary conversational
speech recognition task.

The comparable gain with MLLR is 4.3%.

Unlike conventional MLLR, the parameters of the APT can be
robustly estimated in the face of limited enrollment data.

The Homewood Extensions are now available at
ftp://ftp.clsp.jhu.edu/pub/the.
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